From 1 - 10 / 16
  • Categories    

    The data set contains information on topsoil chemistry for 20, 10&nbsp;cm deep soil cores sampled along an elevation gradient (40-1550&nbsp;m a.s.l.) in Far North Queensland. Information on soil C:N, N:P and C:P ratios and soil pH and organic matter content are provided. Soil elemental composition such as calcium, potassium, phosphorus, sulphur, iron, manganese, boron, aluminum, copper, zinc, lead, chromium, and cadmium are also provided. In addition, the data set contains information on soil δ<sup>13</sup>C and δ<sup>15</sup>N isotope concentration.

  • Categories    

    The dataset accompanies the paper by Zemunik et al. (2015), which used the Jurien Bay dune chronosequence to investigate the changes in the community-wide suite of plant nutrient-acquisition strategies in response to long-term soil development. The study was located in the Southwest Australian biodiversity hotspot, in an area with an extremely rich regional flora. The dataset consists of both flora and soil data that not only allow all analyses presented in the paper (Zemunik et al. 2015) to be independently investigated, but also would allow further exploration of the data not considered or presented in the study. The study used a randomised stratified design, stratifying the dune system of the chronosequence into six stages, the first three spanning the Holocene (to ~6.5 ka) and oldest spanning soil development from the Early to Middle Pleistocene (to ~2 Ma). Floristic surveys were conducted in 60 permanent 10 m × 10 m plots (10 plots in each of six chronosequence stages). Each plot was surveyed at least once between August 2011 and March 2012, and September 2012. To estimate canopy cover and number of individuals for each plant species within the 10 m × 10 m plots, seven randomly-located 2 m × 2 m subplots were surveyed within each plot. Within each subplot, all vascular plant species were identified, the corresponding number of individuals was counted and the vertically projected vegetation canopy cover was estimated. Surface (0-20 cm) soil from each of the 420 subplots was collected, air dried and analysed at the Smithsonian Tropical Research Institute in Panama, for a range of chemical and physical properties, the main ones of which were considered in this paper being total and resin soil phosphorus, total nitrogen and dissolved organic nitrogen, soil total and organic carbon, and pH (measured in H20 and CaCl2). However, other soil data are also presented in the dataset. Nutrient-acquisition strategies were determined from the literature, where known, and from mycorrhizal analyses of root samples from species with poorly known strategies. Most of the currently known nutrient-acqusition strategies were found in the species of the chronosequence. Previous studies in the Jurien Bay chronosequence have established that its soil development conforms to models of long-term soil development first presented by Walker and Syers (1976); the youngest soils are N-limiting and the oldest are P-limiting (Laliberté et al. 2012). However, filtering of the regional flora by high soil pH on the youngest soils has the strongest effect on local plant species diversity (Laliberté et al. 2014). <br></br> References: [1] Zemunik, G., Turner, B., Lambers, H. et al. Diversity of plant nutrient-acquisition strategies increases during long-term ecosystem development. Nature Plants 1, 15050 (2015). https://doi.org/10.1038/nplants.2015.50 ; [2] T.W. Walker, J.K. Syers. The fate of phosphorus during pedogenesis Geoderma, 15 (1) (1976), pp. 1-19, 10.1016/0016-7061(76)90066-5 ; [3] Laliberté, E., Turner, B.L., Costes, T., Pearse, S.J., Wyrwoll, K.H., Zemunik, G. & Lambers, H. (2012); [3] Laliberté, E., Turner, B.L., Costes, T., Pearse, S.J., Wyrwoll, K.-H., Zemunik, G. and Lambers, H. (2012), Experimental assessment of nutrient limitation along a 2-million-year dune chronosequence in the south-western Australia biodiversity hotspot. Journal of Ecology, 100: 631-642. https://doi.org/10.1111/j.1365-2745.2012.01962.; [4] Laliberté E, Zemunik G, Turner BL. Environmental filtering explains variation in plant diversity along resource gradients. Science. 2014 Sep 26;345(6204):1602-5. doi: 10.1126/science.1256330.

  • Categories    

    This record contains data on the leaf level physiology, chemistry and structural traits from the Robson Creek Site, Far North Queensland measured in 2012. There are two data sets provided: 1) response variables containing parameters associated with photosynthetic light response curves (Al) and 2) response variables containing parameters associated with photosynthesis and intercellular carbon dioxide curves (ACi).

  • Categories    

    This record contains data on the leaf level physiology, chemistry and structural traits from the Daintree Rainforest Observatory, Cape Tribulation Site, Far North Queensland measured in 2010.

  • Categories    

    The record contains information on leaf trait and stable isotope data of <i>Eucalyptus salubris</i> trees in the Credo Flux tower area, from the Great Western Woodlands Site. Data on individual tree height, stem circumference and leaf traits such as leaf thickness, leaf mass, leaf density, specific leaf area, leaf chemical data, including the d<sup>13</sup>C and d<sup>15</sup>N content are provided. In addition, data on soil chemical analysis from the site are provided.

  • Categories    

    This dataset contains leaf functional trait measurements describing leaf structure, chemistry and metabolism collected from the Daintree Rainforest, Cape Tribulation site, in the dry season 2012 and wet season 2014.

  • Categories    

    The record contains information on the leaf level physiology, chemistry and structural traits data measured from dominant tree and shrub species from the Great Western Woodlands Site in 2013. Data on leaf level physiology parameters associated with light saturated photosynthesis and intercellular carbon dioxide curves (AC<sub>i</sub>), and leaf dry mass per leaf area trait (LMA) and leaf nitrogen and phosphorous content are provided.

  • Categories    

    The TREND (PSRF)- Terrestrial Ecosystems project initiated a landscape-scale monitoring transect along the Adelaide Geosyncline region in southern Australia, initially spanning approximately 550 km. The aim was to examine spatial drivers of species composition and to isolate the influence of climate on whole vegetation community composition and therefore inform on-going monitoring of the impact of climate change. Specific questions were: 1. What are the most important spatial drivers of species and phylogenetic composition along landscape-scale environmental gradients? 2. Can the answer to Question 1. inform selection of suitable spatial analogues for climate change? 3. How can a framework for assessing spatial drivers be used to monitor and interpret shifts in species composition due to climate change? The dataset consists of site and species records (see attachments) for plots established along the Adelaide Geosyncline for the TREND project. Data consist of vascular plant species composition (presence-abundance/absence) within 900m<sup>2</sup> plots plus site data, including aspect and soil properties. Data have been used to analyze changes in composition with geographic and environmental differences and as a baseline for monitoring.

  • Categories    

    This dataset contains leaf functional trait measurements describing leaf structure, chemistry and metabolism collected from the Cumberland Plain site in 2014.

  • Categories    

    This dataset contains leaf functional trait measurements describing leaf structure, chemistry and metabolism collected from the Calperum Mallee site, in 2013.